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A generalized motion model is presented which describes crystallization of a binary 
alloy from the transitional phase. As a special case this generalized motion model contains 
the generally accepted model with well-defined phase transition front, convenient for numeri- 
cal calculations, for example by the indirect count method using implicit configurations. 

Within the framework of phenomenological theory the problem of crystallization of a 
binary alloy is usually formulated in the following manner: in a region ~ one must define 
a smooth surface F(t) (the phase transition boundary) which divides the region ~ into two 
subregions ~+(t) and ~-(t), occupied by liquid and solid phase, respectively. The liquid 
or solid state of the medium at a given point in space at a given moment in time is defined 
with the aid of a phase equilibrium diagram (Fig. i) using the values of the temperature 
8 and impurity concentration c: if the temperature 8 is greater than ~+(c), then the medium 
is in the liquid state, while if the temperature is less than ~-(c), then it is in the solid 
state. The curves L • = {(8, c)I@ = ~• 0 < c < i} = [(8, c)Ic = f• @A* < @ < @B*} 
are called the liquidus and solidus. In each of the regions ~• the temperature satisfies 
the thermal conductivity 

aOO/Ot = div(• ( ! )  

while the concentration satisfies the impurity diffusion equation 

Oc~t = div(DVc). ( 2 )  

Here a, ~, and D are the heat capacity, thermal conductivity, and diffusion coefficients, 
which, as a rule, are assumed constant in each phase but, generally speaking, differ between 
the phases. For example, a = a + = const in the liquid phase, a = a- = const in the solid, 
while a + ~ a - .  

On the boundary F(t) to be determined the energy balance condition (Stefan condition) 
must be satisfied 

[UIV~ = - - I x  OO/On], x ~ F(t) ( 3 )  

together with the mass-balance condition 

[clV.  = - - [D Oc/On], z ~ F(t), ( 4 )  

where [U] = U + - U-; U • is the limiting value of the enthalpy U on the boundary F(t) from 
~• V n is the displacement rate of the boundary F(t) in the direction n of the normal 
to this boundary. 

The limiting values of the temperature on F(t) coincide: 

[0l = 0, x ~ r ( t ) ,  ( 5 )  

while the limiting concentration values are determinable from the phase equilibrium, diagram: 

~+(e +) = ~ - (c - )  = 0 + = 0-,  x ~ F(t). ( 6 )  

The  m a t h e m a t i c a l  m o d e l  i s  c o m p l e t e d  by  two c o n d i t i o n s  on t h e  b o u n d a r y  o f  fl f o r  t e m p e r a -  
t u r e  and concentration together with initial conditions for temperature, concentration, and 
the phase transition boundary. In the model described, the surface F(t) is a surface with 
a strong discontinuity in concentration c and enthalpy U; therefore, it is natural to call 
this model one of motion with a strong discontinuity (MSD), while in analogy to the Stefan 
problem [i], its solution is classical. 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
4, pp. 39-45, July-August, 1989. Original article submitted April 15, 1986. 

0021-8944/89/3004-0545512.50 �9 1990 Plenum Publishing Corporation 545 



, I 

Y 
0 ] , !  _ 

lOOYo A /00% s c 

t I 
I I 
I I 
I l 
I I 

Fig. 1 Fig. 2 

As an initial-boundary problem the MSD model of Eqs. (1)-(6) is complex, and at present 
the existence of a classical solution has been proven only for a single spatial variable 
over a sufficiently short time interval [2]. Moreover, in [3, 4] peculiar solutions were 
found, in which both behind and ahead of the crystallization front the temperature was less 
than values determined by the length of the solidus L- on the phase equilibrium diagram, 
and it was maintained that these solutions reflected a process of supercooling, although 
it was obvious that while satisfying conditions (1)-(6), they were not a solution of the 
MSD model, since the basic requirement for which the boundary F(t) is meaningful was not satis- 
fied: in ~-(t)8 the value of ~-(c)is lower, while in ~+(t)8 the value of T+(c) is higher. 

Thus, it has not been possible to demonstrate the existence of a classical solution 
over all times, while in some cases such a solution is simply lacking (which in the authors' 
opinion is the result of [3, 4]). In analogy to the Stefan problem of [i] we will assume 
that for a binary alloy, crystallization is described by a wider class of generalized solu- 
tion, containing within itself as a subclass, the classical solutions. Such attempts have 
been made by a number of authors [5-8], and a quite perfected form of the generalized motion 
(GM) model for low concentrations was presented in [6]. 

The goal of the present study is the axiomatic construction of a GM model commencing 
from the minimum number of generally accepted thermodynamics postulates. As in the case 
of the Stefan problem of [i], the basic axiom of the model admits the possibility of exis- 
tence of a transitional phase with the temperature of the medium coinciding with the fusion 
temperature, while the enthalpy can take on values from the entire interval determined by 
the limiting values of enthalpy for the liquid and solid phases. 

Upon crystallization of a binary alloy the thermodynamic state of the medium is determined 
by seven parameters: the enthalpy U, temperature e, entropy S, concentrations c A and CB, 
and chemical potentials PA and ~B corresponding to the materials A and B. In each phase 
let the indicated parameters satisfy the Gibbs identity dU = 8dS + ~AdCA + ~BdCB (c A + c B = 
i) while the enthalpy depends solely on temperature: 

U = aO + ~ (a, ~ = const). 

These  a s s u m p t i o n s  and t h e  Gibbs t h e o r e m  [9 ,  p.  67] which  s t a t e s  t h a t  

(7) 

~A-----~= U--OS--c~ (8) 

(c  = CB, p = DB -- ~h) p e r m i t  t h e  i n t r o d u c t i o n  o f  two i n d e p e n d e n t  p a r a m e t e r s ,  f o r  example 
the temperature 0 and the potential ~, which define all the remaining parameters and, conse- 
quently, the thermodynamic state of the medium. 

The Gibbs identity for the independent parameters 8 and D takes on the form 

d W  = - - S d O - - c d g ,  (9)  

whence i t  f o l l o w s  t h a t  S = - 8 ~ / 8 0 ,  c = -8~ /8D.  In  p a r t i c u l a r ,  c o n s i d e r i n g  Eq. (8 )  as  a f i r s t -  
order equation for �9 with the given identity Eq. (7) for the function U, we find that, in 
each phase, 

g O ,  ~) = ~0(F/O)O --  ~0 In 0 + ~ (10)  

[~0(T) is an arbitrary function]. 
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The first axiom A z of the GM model states that, in the liquid and solid phases, iden- 
tity (9) and Eq. (7) are valid, while phase transition from the liquid to the solid state 
(or the opposite) occurs with local thermodynamic phase equilibrium, i.e., the temperature 
e and chemical potentials ~A and PB of the liquid phase are equal to the analogous parameters 
of the solid phase. 

The latter assertion corresponds to the existence within the plane of the variables 
e and ~ of a curve ~ = r which divides the plane into two subregions H + and H- such that 
the values of e and p in N+ define the liquid phase, while the values of 8 and p in H- define 
the solid phase, while along the indicated curve ~+(e, D) = Y-(e, p). 

Turning to the concrete form of �9 in each phase, we have 

= ~ ( o ) - - = o ~ ( o ) .  ( l l )  

The dependence of temperature on potential ~ converse to gq. (ii) defines the fusion 
temperature of the medium 0 = 8"(~). We will assume that, in each phase, enthalpy is an 
increasing function of temperature, while upon transition from the solid phase to the liquid 
this quantity increases, i.e., either a + ~ ~- > 0, O ~ 8 0 = -[~]/[~], or ~- ~ ~+ > 0, 0 ~ e 0. 

Following the principles of construction of the GM model, we assume that along the phase 
equilibrium curve of Eq. (ii) there is located a fold, in which the transition state is hidden.. 
One variant for smoothing this fold is transition to the variables e and c. To do this, 
from the equations c = -8~• we find the value p = eg• and substitute in Eq. (Ii): e = 
(~-i o g• ~ ~• On the phase equilibrium diagram (see Fig. i) the region ~+ of the 
variables e and p corresponds to the region {e > ~+(c), 0 < c < i} (which we denote by H+), 
while the edge of the fold, Eq. (ii), on the liquid-phase side, is the liquidus curve L +. 
Analogously, the region H- of the variables e and p and corresponds to the region {e <~ -(c), 
0 < c < i}, while the edge of the fold of Eq. (Ii) on the solid-phase side is the solidus 
curve L-. 

Now having the phase-equilibrium diagram in the plane of the variables e and c, it is 
simple to reconstruct the phase equilibrium line of Eq. (ii). To do this, we differentiate 
the identity 

0 ~  (~ (0)) - -  ~+0 In 0 + ~+ = 0 ~  (~ (0)) - -  ~ - 0  ~n 0 + ~ -  

with respect to temperature, and applying Eq. (7), we find 

dq~ 1 U + - r T -  _ ~ [U] 
dO 0 ~ c + - c -  0 ~- [c] " 

We will assume that the liquidus and solidus lines on the phase equilibrium diagram 
approach the lines c = 0 and c = 1 at different angles, which are not multiples of 7/2. Then 
the function �9 in Eq. (ii) has a logarithmic singularity at the points CA* and eB* and the 
potential ~ along Eq. (ii) increases without limit upon approach of the temperature to these 
values. The approximate form of the phase equilibrium curves in the plane e and p is shown 
in Fig. 2. 

The region ~* in the plane of the variables e and c, limited by the liquidus and solidus 
curves, corresponds to the transitional phase, in which no quantities are defined. How do 
we extend the thermodynamic parameters ~, U, S, and ~ into the transitional phase? Most 
natural would be assuming the validity of identity (9) and Eq. (8) for the potential ~. More- 
over, it is also natural to assume the existence of a process whereby the binary mixture 
transforms from the liquid state to the solid (or the converse) through a transitional state 
(in region H* of the variables e and c this process corresponds to a continuous curve joining 
the liquidus and solidus lines) such that the chemical potentials ~A and ~B (or the potentials 
# and ~) change continuously. In other words, in the region H of changes in the parameters 
9 and c the potentials ~ and Y are defined and continuous. 

The requirement of continuity is fundamental, and the potentials D and Y can be reconstruc- 
ted in the region H* in a natural manner. To do this it will be sufficient to consider the 
segment I e = {(8, c)18 = const} in H*, joining the liquidus and solidus lines. In the plane 
of the variables e and ~ the segment 18 corresponds to a point on the phase equilibrium curve 
(ii), i.e., along 18 in H* the value of the potential p is constant. From identity (9) and 
Eq. (ii) it follows that Y is also constant along IQ. 
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Since F = ~ + cD, together with the potentials ~ and ~ in the region H the free energy 
F is continuous. Rewriting identity (9) in the form dF = -Sd8 + ~dc, we can prove that the 
entropy S is also continuous upon transition through the liquidus and solidus lines. In 
fact, the latter identity is equivalent to the equalities ~ = 8F/8c and S = -3F/Be. Let 
F = F*, ~ = ~* in H* and F = F +, ~ = ~+ in H +. Then F+(8, f+(O)) = f*(e, f+(O))and ~*(e, 
f+(O)) = 8F/8c(0, f+(8)) = 8F+/Sc(O, f+(e)) = ~+(o, f+(8)). Differentiating the expression 
F + = F* along the liquidus, we obtain 8F+/SO + D+Sf+/~e = 8F*/80 + D*sf+/se, whence follows 
the continuity of the entropy upon transition through the liquidus. The solidus may be 
treated analogously. 

The continuity of the entropy and the equation U = F + 0S compel continuity of the en- 
thalpy everywhere in H. Turning to the easily derived consequence of the Gibbs identity 
8(V/8)/80 + (i/82)8U/8c = 0 and the definition of ~ in the transitional phase, we conclude 
that in the transitional phase the enthalpy depends linearly on concentration: 

[a]O +[~] ( e - - / -  (0)) (12)  
U = ~-0  + ~-  + 1 + (o) - l -  (o) 

for f+(e) < c < f-(o), 0t* < 0 < 0g*. 

The second axiom A 2 of the GM model states that all states corresponding to values of 
the parameters 0 and c from the region H* are physically realizable, identity (9) and Eq. 
(7) are valid in H*, and the chemical potentials DA and DB are defined and continuous in H. 

The potential D increases without limit at the extremal points of the phase equilib- 
rium diagram, so that it is more convenient to consider ~ as the unknown function, as defined 
from the equation 8~(~) = D- Returning to the concrete form of the potential �9 and concen- 
tration c in the liquid and solid phases we see that there the potential v depends solely 
on concentration. By the construction of the model in the transitional phase v = 0. This 
equality is also valid on the boundary H* on the liquidus L + and solidus L- lines: v = 6 = 
f+(c) on L + and ~ = 0 = f-(c) on L-. Consequently, everywhere in H +, v = f+(c), while in 
~- ,  ~ = f - ( c ) .  

More detailed analysis reveals that the fold along the curve of Eq. (Ii) in the plane 
8 and D, does not smooth completely in the plane of the variables 8 and c: at the points 
(@A*, 0) and (SB*, I) transitional states remain hidden, these corresponding to transitions 
of the pure substances A and B. In the new variables U and v the fold smooths completely. 
In the plane of U and ~ the liquid phase corresponds to the region H + = {U e ~+9 + 6 +, 
OA* ~ v ~ 0B*}, the solid, to the region H- = {U E ~-~ + ~, OA* <_ v <_ OB*}, and the transi- 
tional phase to the region H* = {6- + a-v ~ U ~ 6 + + ~+v, 0A* ~ v ~ OB*}" The transitional 
state of the pure substances A and B corresponds to the segment {OA* = v} and {OB* = v} from 

Dependences of temperature and concentration on enthalpy U(v = const) and potential 
v (U = const) are shown in Figs. 3 and 4. By construction the functions e and c are con- 
tinuous, while their first derivatives have a discontinuity of the first type. The dis- 
continuity points of the derivatives of the function c in Fig. 4 shift along the liquidus 
and solidus such that the function c(U, v) always increases monotonically with increase in v. 

The thermodynamic state of the binary mixture is determined by two independent param- 
eters (0 and c, if 0 < c < I, or U and v). Therefore, for complete description of the be- 
havior of the medium two additional equations are required, these being the laws of conserva- 
tion of energy and mass. These equations must be defined for all values of the independent 
thermodynamic parameters everywhere in the region ~ for all values of time. Since the GM 
model is constructed as an expansion of the MSD model, in those regions occupied by liquid 
and solid phases the law of conservation of energy should coincide with thermal conductivity 
equation (i), and the mass conservation law with diffusion equation (2). 

In the Stefan problem of [i], which serves as our pilot model, this can be realized 
in the form of the equation 

OU/Ot = div ~vO), (13)  

in which the dependence of temperature 0 on enthalpy U for a given value of v is shown in 
Fig. 3. If v = const (fusion temperature of the pure substance constant), then in Eq. (13) 
the coefficient r is defined in the liquid and solid phases, while in the transitional phase 
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it is sufficient to consider it finite: there KVO ~ 0. But if v = v(x, t), then in the 
transitional phase it is necessary to supplementarily define the thermal conductivity coef- 
ficient in the transitional phase. There are no further considerations as to how this should 
be done at present, so that we usually use the simplest possible method of extrapolation: 
in the transitional phase K is a linear function of enthalpy, directly joining the values 

K + and K-. 

Thus, all quantities in Eq. (13) are defined. Physically the function U, subject to 
differentiation in Eq. (13), may undergo a discontinuity of the first type. How then are 
we to understand the equation? Following [i0], we must understand it in a generalized sense 
as an integral identity 

U ~ t  @ zV 0 = 0, (14)  

~T 

v a l i d  f o r  a l l  smooth f i n i t e s  in  a T = ~ x (0 ,  T) o f  t h e  f u n c t i o n s  ~. I t  can e a s i l y  be shown 
t h a t  i f  in  a t h e r e  e x i s t s  a smooth s u r f a c e  F ( t ) ,  d i v i d i n g  ~ i n t o  s u b r e g i o n s  ~ •  o c c u p i e d ,  
r e s p e c t i v e l y ,  by l i q u i d  (U ~ a+v + ~+) and s o l i d  (U ~ a - v  + 6 - )  p h a s e s ,  t h e n  in  ~ •  t h e  
t e m p e r a t u r e  8 s a t i s f i e s  Eq. ( 1 ) ,  w h i l e  on t h e  b o u n d a ry  F ( t )  i t  s a t i s f i e s  t h e  S t e f a n  c o n d i -  
t i o n  Eq. ( 3 ) .  

In  a n a l o g y  t o  t h e  S t e f a n  p rob l em we w i l l  assume t h a t  in  t h e  GM model  Eq. (13)  i s  s a t i s -  
f i e d ,  while the coefficient K in ~+ and ~- coincides with the values of ~+ and ~-, respec- 
tively, depending linearly on U (if the independent variables are U and v) or c (if the inde- 
pendent variables are e andc) in H*, and being continuous everywhere in H. If the independent 
variables are @ and c, then the temperature dependence of enthalpy in H + and 9- is given 
by Eq. (7), and in ~* by Eq. (12). If the independent variables are U and v, then @ = @(U, 
v) is given by the diagram in Fig. 3. 

We will now consider the law of conservation of mass. If we assume that it is described 
everywhere by Eq. (2), then by redefining the coefficient D in the transitional phase, as 
was done in [Ii], we immediately eliminate classical solutions of the MSD model. As is well 
known, all solutions of Eq. (2) with D 2 D o = const > 0 are continuous [i0, p. 238], while 
in the classical solution the concentration c suffers a discontinuity of the first sort on 
the phase transition surface F(t). 

In fact, the impurity diffusion equation has a form other than that of Eq. (2). If 
we consider that there exists a mass flow vector j such that 8c/8t = div ~ , then using the 
Gibbs equation 8dS = dU + ~dc, the principle of nondecrease in entropy for an arbitrary ther- 
mally insulated volume 

d ;Sdx~O. j.n]o~ = O, vO-nla~-- 0 dt 
(o 

and the Onsager symmetry principle [9], it is simple to derive the expression i = AV(D/@) = 
%Vv, which we take as the basis for the impurity diffusion equation 

Oc/Ot :div (LVV). (15) 
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The latter coincides with Eq. (2) in the liquid and solid phases, if 

( c )  = :  

In the transitional phase the coefficient X may be supplementarily defined as a linear 
function of enthalpy, continuous for all values of the independent variables. Equation (15), 
like Eq. (13), is to be understood in a generalized sense as satisfaction of the correspon- 
ding identity. If the solutions of Eqs. (13) and (15) are such that e and v are continuous 
in ~T, and in the region ~ there exists a smooth surface F(t) dividing the regions ~• oc- 
cupied by liquid and solid phases, then there follows from Eq. (15) the diffusion equation 
(2) for the concentration in each of the regions ~• and the mass balance condition (4) 
on the boundary F(t). 

Conditions (5) and (6) are a consequence of the continuity of 8 and v. Thus, the GM 
model contains the MSD model as a special case. Axion A3, which completes the GM model, pos- 
tulates the validity of Eqs. (13) and (15) everywhere in the region ~T and describes the co- 
efficients ~ and X. 

The GM binary alloy crystallization model is essentially broader than the MSD 
model. This can even be seen in the simplest possible case of a steady-state one- 
dimensional problem where the region ~ is the segment (0, i). Precise results were formulated 
in [i], one of which consists of the following: if on one boundary of ~ the liquid state is 
specified, while the solid state is specified on the other, then for sufficiently small de- 
viations from the equilibrium position in the region ~ there exists a transitional phase oc- 
cupying the region ~* c ~. 
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